Design Of a Charge Measurement Device

TEAM SDMAY20-11: BEN BUETTNER, BRANDON DEGELAU, COLIN ISHMAN, DANIEL FRANTIK, KEAGAN PLUMMER, NICK WOLF

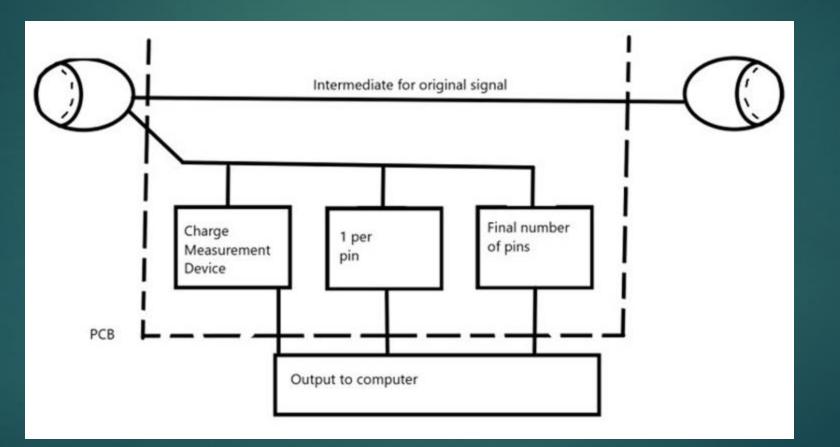
ADVISOR: LONG QUE

CLIENT: HONEYWELL (JACOB STARR, NATHEN ORTON)

WEBSITE: <u>HTTP://SDMAY20-11.SD.ECE.IASTATE.EDU/</u>

Problem Statement

Honeywell needs a way to accurately measure the accumulation of charge on electronic devices they are testing. The circuit should be capable of measuring the electronic discharge between a pin and connector shell while a high voltage is applied to the pin. The desired device should be reasonably sized and capable of handling any conditions or operating points that Honeywell specifies. The application of this device is important for extending Honeywell's ability to accurately test and understand the behavior of the electronics they are developing.


High Level Overview

Build a circuit that can measure the amount of charge of a connected device

► Q=C*V

Charge on the shell should create a voltage across the Capacitor

Conceptual Sketch

Functional Requirements

Measure charges between 10 nC and 300 nC

- InC accuracy
- ► Works between 250 V to 750 V
- Create a simple design

Considerations

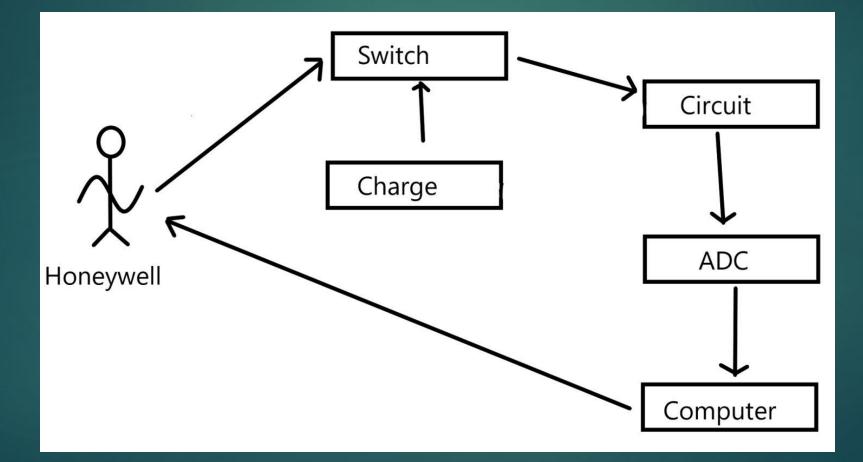
► Assumptions

- Lab based equipment
- Cost is not an issue
- Users are knowledgeable about the design
- ► Limitations
 - Higher accuracy requires higher voltage
 - Limited knowledge of the system design is integrated into

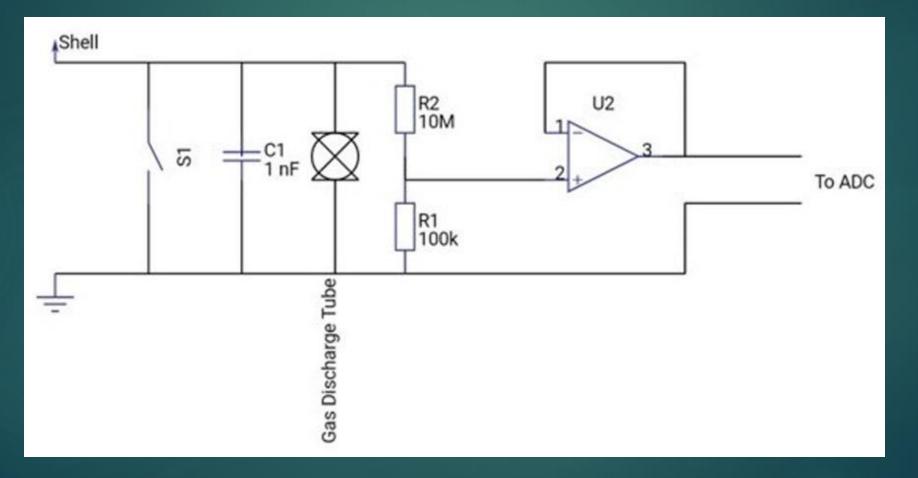
Potential Risks & Mitigations

- High voltage testing procedure
- Keeping everyone informed about what being worked on before testing the circuit
- Lock out tag out plan

Resource/Cost Estimation


Given a budget of \$2500 Per semester

- High Voltage Power Supply was lent to us by Honeywell
- Spent approximately \$400 on components
- Most for low voltage testing
- ADC and parts where order for high voltage circuit


Milestones and Schedule

Project Step	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Charge Measurement Research							
Low voltage model							
Part research							
PCB design							
High voltage model							

Functional Decomposition

Detailed Design

HW/SW Used

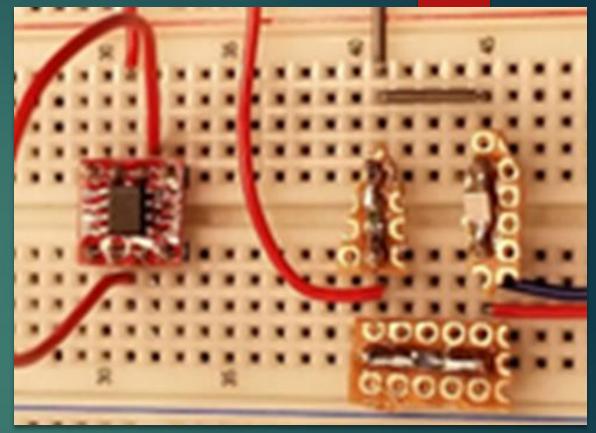
- Before COVID-19 Shutdown
 - Altium Designer
 - Kicad
 - Test Equipment
 - HV power supply, Oscilloscope, Multimeter
- Post COVID-19 Shutdown
 - ► PSPICE

Test Plan

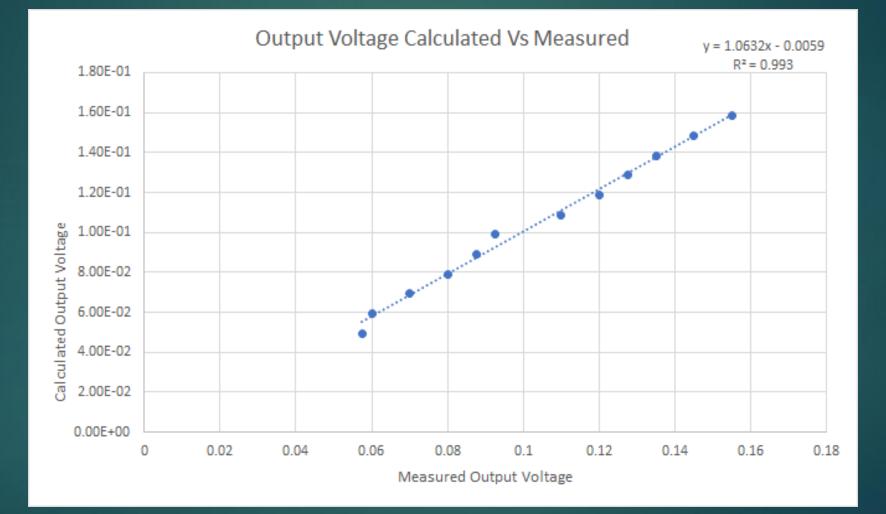
- Testing will be divided between a low voltage and high voltage model
 - Low voltage model breadboard
 - Applying known voltages across known capacitances
 - Tools: Multimeter/oscilloscope

PSPICE Simulations

Confirm design at higher voltages


Physical Prototype

Low Voltage Model made

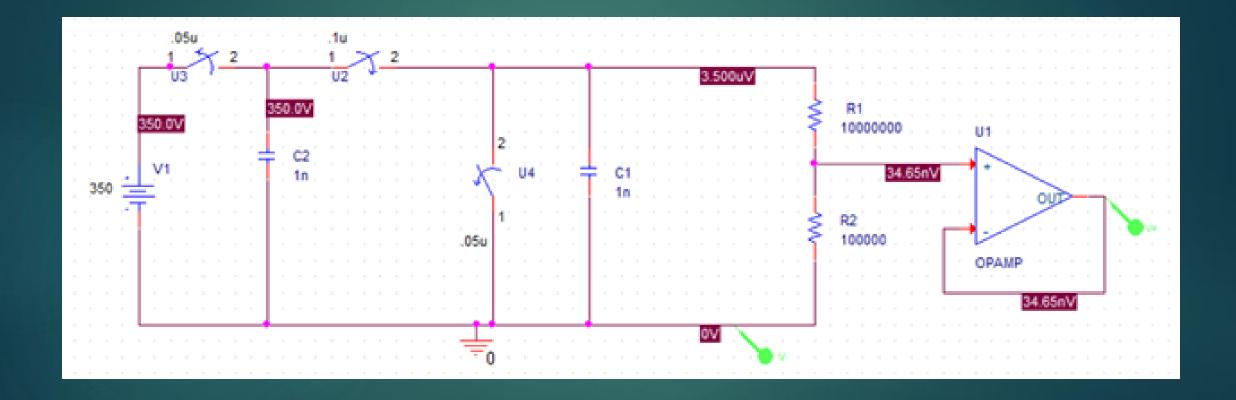

- Made on breadboard
- Capacitor values
 - ► Source capacitor: 100 nF
 - ▶ Reference capacitor: 1 nF

► Voltage test range 5 – 15 VDC

C Charged	9.89E-06	1.00E-09		101		
Voltage	Voltage Across C1	Charge On C1	Measured Voltage Before Op	Measured Output Voltage	Calc Voltage Out	Calc Voltage Before Op amp
5	4.997	4.94E-05	5	0.0575	4.95E-02	4.996494630E+00
6	5.997	5.93E-05	6	0.06	5.94E-02	5.996393495E+00
7	6.997	6.92E-05	7.0625	0.07	6.93E-02	6.996292360E+00
8	7.998	7.91E-05	8	0.08	7.92E-02	7.997191124E+00
9	8.998	8.90E-05	8.9375	0.0875	8.91E-02	8.997089990E+00
10	9.999	9.89E-05	9.935	0.0925	9.90E-02	9.997988754E+00
11	10.999	1.09E-04	10.93	0.11	1.09E-01	1.099788762E+01
12	11.999	1.19E-04	11.9375	0.12	1.19E-01	1.199778648E+01
13	12.999	1.29E-04	1.29E+01	0.1275	1.29E-01	1.299768535E+01
14	13.999	1.38E-04	1.39E+01	0.135	1.39E-01	1.399758421E+01
15	14.999	1.48E-04	1.48E+01	0.145	1.48E-01	1.499748308E+01

Low Voltage Testing

Low Voltage Testing Conclusions


▶ R² Value is 0.993

- System behaving very predictably
- Linear Equation derivable
- Planned to proceed with high voltage testing

COVID-19

- No access to lab for testing
- No in person meeting
- Used PSPICE to test high voltage model

PSPICE

PSPICE Continued

C Charged	1.00E-09	1.00E-09		101		
Voltage	Voltage Across C1	Charge On C1	Measured Voltage Before Op	Simulated Output Voltage	Calc Voltage Out	
50	50	5.00E-08		0.248	2.48E-01	
100	100	1.00E-07		0.495	4.95E-01	
150	150	1.50E-07		0.743	7.43E-01	
200	200	2.00E-07		0.99	9.90E-01	
250	250	2.50E-07		1.238	1.24E+00	
300	300	3.00E-07		1.486	1.49E+00	
350	350	3.50E-07		1.734	1.73E+00	

PSPICE Conclusions

- Theory of the design confirmed
- Design should be able to be used by Honeywell for their testing

Engineering Standards and Design Practices

Engineering Standards

- IEEE 4-2013 (High Voltage Testing)
- IEEE 1696-2013 (High Voltage Probe Measurement)

Practices

- ▶ No official design practices were applied to this project.
- The main design constraint this project dealt with was ensuring all components would safely operate under the high voltage range designated by Honeywell.

Member Responsibilities

- Ben Buettner Test Engineer
- Brandon Degelau External Meeting Facilitator
- Colin Ishman Report Manager
- Daniel Frantik Internal Meeting Facilitator
- Keagan Plummer Chief Engineer
- Nick Wolf Scribe

Conclusion

Future Prospect of the Project

- Honeywell wanted a small, easily repeatable circuit they could modify to fit their needs
- ▶ We do not have a physical High Voltage prototype, but
 - The theory behind the design has been confirmed in P-Spice and low voltage testing
 - ▶ We believe Honeywell can proceed with this design

Questions?